RADIATIVE HEAT TRANSFER IN A GAS-FILLED
SPHERICAL RING

A. S. Nevskii UDC 536.3

An analysis is made here of the radiative heat transfer in the gas-filled space between two
concentric spheres.

A completely correct solution to the problem of radiative heat transfer between a gray isothermal
medium and isotropically reflecting boundary surfaces is, at the present {ime, known only for the simplest
geometrical shapes: an infinitely long stratum, a sphere, and an infinitely long cylinder. In the case of a
stratum or a sphere with mirror surfaces such a solution has been obtained for a gray medium as well as
for a selectively emitting gas {1].

We will ccnsider here the radiative heat transfer between an isothermal gas, gray or selective,
occupying the space of a spherical ring bounded by an inner surface k and an outer surface i which are
- either mirror orisotropically reflecting.

Radiative Heat Transfer in the Case of a Gray Gas and Isotropically Reflecting Surfaces. The ab-
sorptivities of the medium will be equal here to its emissivities. The equations of heat balance for each
surface are:

Qinc: = FiaGiGOTé"l'Qeffi(Pii (1—a;;) + Qe (1—asp), (1)
Qiner = FansTe+ Qe Pir (1—ain)- 2

The magnitudes of thermal fluxes Q. and Qeff are related according to the equation in (1, Chapter 1]:
Qest= QincR + FAs,T*. &)

The gas has an absorptivity referred to radiation from surface i
agn = 00y, + (1—0) a;;. 4 (4)
The angular coefficients are

Pip =0, O =1—o0. (5)

After solving these equations, we easily find the resultant
amount of heat transfer at surfaces i and k. Omitting all the
intermediate calculations, which are unwieldy but not difficult
in principle, we show the final result:

ol (n-1)x Qg; = Fi4:0 {[aG/ + Ru®inan (1— ay)] (Té— T%)
+ A9un (1—ay) (T3 —TH} {1— Ry (1— ay3) — RiRy@sp, (1— ap )} +(6)

_ex.—.— — e — . dfp— — F_nx .
Qri= FrAroo | [@i TRy (1— az) — Ry93a (1— as;)] (T4G—— Tt)
+ A (1= ag) (T = TH)] {1— Ry, (1—a;) — RiRypy, (1 — a2 (1)
A B ) Qro=— Qg + Qy- (8)
Fig. 1. Schematic diagram for for- Radiative Heat Transfer with Mirror Reflection at the Sur-
mulas (11)-(13). faces, The resultant heat transfer at surface k is
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Fig. 2. Schematic diagram of radiant fluxes originating in the gas.

Fig. 3. Schematic diagram of radiant fluxes originating at the sur-
faces,

Q= F [qgae) T ACETRCE (k)] , 9)
and at surface i is
Qi = Fi [450 + .0 + 0,0+ 6:(0) + g, ()~ ,0)] (10)

We will first derive a few auxiliary relations. We consider a beam of rays in the isothermal gas
along path x (Fig.1). These rays traverse in the gas n—1 segments of length x each. The transmissivity
of the medium here along the path (n—1)x

D(n—l)x = d1d2 e dn_l’ (11)
according to the definition, with d;, d,, . . . denoting the transmissivities of the medium in each segment,
will be found with the aid of formula (2-136) in [1]:

Ene — &1z . (1 2) :

g

Dey_yye =

Considering the surface radiation absorbed by the gas, we have
D(n—l)x = l— Q1) (13)
with a(n_;)x denoting the absorptivity of the gas with respect to this radiation,

These relations apply also to rays passing through a gas layer of thickness x along a broken-line
path as a result of mirror reflections at the boundary surfaces.

The total gas radiation incident on a surface element dFy (Fig. 2A) or dF; (Fig. 2B) in any direction
whatever consists of direct radiation from the gas along path 1 and of radiation coming from it along such
segments as 2, 3, ... reaching surface k or i after a series of reflections at these surfaces and absorp-
tion by the gas. The amount of energy absorbed by surfaces k and i can be calculated by adding the se-
quence of rays and then integrating over all angles, The result will be

qG(k) - _‘i’zﬁ S‘ Sx(l_}? Ry, + R;Rydd, + .. .) cos pdw, (14)
* 2
AT
g = ol j e (1 Rydy + RyRidudy + . ..) cos odo. 15)

@g

The dj products will be now replaced according to formula (11), after which we use expression (12):

golk) = _é“;:iA@ j [Bx -+ Ry (B — ) + RiRy (g — €) + - .| cos gdo, (18)

2n
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. AgT: 1
gl = ~2e 5 [2a -+ Ry (eex — &) + RuRy (s —£0) + ... cos g, (17)

o

In order to transform Eqgs. (16) and (17), we use the identity

€x + R [Brane — Baxl = A8pe + ReGuine (18)

after which we integrate the obtained expressions:
9eih) = 0T 1Ay (s b To) + AR G b T9)) 5 (19)
65(i) = 00w [ Al s %y Tp) + AR (i B T (20)

where
Xl By T=&.(i, B)+ RiRues (i )+ ...,
%ol B Tg) = &5, (s &) + RiRuE, (s B) 4 ...
Coefficients g . in(21)represent the mean emissivities of the medium between surfaces i and k. The sub-

scripts r, 2r, 3r,... indicate that the respective values of ¢ refer to the original system with radii r; and
rk, to a system of twice the dimensions, to a system of three times the dimensions, etc. respectively.

(21)

In addition to radiation multiply reflected between surfaces i and k, surface i receives also radiation
emitted by the gas in directions beyond the other surface k (Fig. 2B). The amount of this radiation is de-
termined in the same manner as ql, (i). We have the following expression for the energy of this gas radia-
tion absorbed by surface i: .

@.(i) = 6, R AlQuxs (s §, Ty, (22)

where
Aslls ) =42 (6 §) 4 Ryt (6 §) = &, (i 0) + Rigy, (i, )+ Rleg, (i, 1)+ ... (23)

In order to determine qp (i), qg(k), g;(k), qj(k), and qpk), we examine the path which the rays emitted by
each of the surfaces k and i traverse as a result of reflection at the surfaces, absorption by the surfaces,
and absorption by the gas.

A unit area of surface k emits a radiant flux Ak"on; (Fig. 3A), One part of this flux is absorbed by
surface i:

4
g, (f) = iq%"]}— A, S‘ (d, + R\R,dydyds + .. .) cosgdo, (24)
27
and another part by the same surface k:
A2 (TA‘
g, (R) = *LGT-:-LRL- S (didy + RyRydyd dod, -+ . ..) cos qdo. (25)
2n

The d; products in Egs. (24) and (25) will now be replaced according to (11) and (13), the infinite series
inside the brackets will then be summed, and the final expressions integrated

1

i) = A,A,0,ThH| ———
qk() Yo k[ lﬂRiRk

—t, B T T (26)

2 4 1 .
gy, (k) = AiR;0,T [m,ﬁxw i, k, Ty, Tg), (27)

with X;a and X, denoting functions analogous to x, and x, in (21) but of black (gray) radiation absorptivities
rather than of gas emissivities, T} denoting the surface temperature, and T denoting the gas temperature
to which they are referred.

In an analogous manner we derive expressions for the radiant fluxes emitted by surface i:

S S
1—R;R,

L
1— RiRh

gy (k) = AiAhq)ikGOT% [ *Xla'(i» k, T, Tg), (28)

q: () =A?Rktp,-h007'3[ —~ g b o Ty Toh (29)
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gi (i) = Al 00T} [ —Xg 6 & T Th (30)

.
I—R;
and with the aid of these as well as formulas (9), (10}, (19), (20), {22), (28), (29), and (30} we find the re-

sultant amount of radiative heat transfer between surfaces k and i:
Q‘—RKXZ Oy {714G[AiAI¢X1 (& & TG) + AlzthXz (i, &, T@)]— Th [AiAkXIa(iv k,

13
T Tg) + AiRix,, s b Ty TRl — 00didly [Thiaalis &, T, T

4
—Thiglis oo T, Tl A0 Ti=Th) (31)
1—R.R,
%:Ri =0, {7%,[‘41"41:7(1 (i, & TG) ‘f‘A?Rsz (i, &, T(;ﬂ ~Ti [AiAkxla(i, k,
i
Ty To) + AiRytoalls & Thy TIl) + (1— 0) 04} [T (s 1, Tg)

0A;A,0,

Th—Th. 32
I_RR, (Te ) (32)

— Tixgylis B Tor TO)| — 00644y [Thia,(is by Tho T) — They (i £, T, T) +
Here QRg is found according to formula (8).

In the case of a gray medium, x;4 =Xy and X,y =X,, both becoming independent of the temperature:

Uk, (4,40, G, )+ AR 6 B (TE—TE)
I

4
A A iy B (TS —Th + 0, A (Ti—Th (33)
e a0, [ 0 B+ AR o B (TE—TY
AA
4 (1= ) 0,2, (1) (Th— T — 00, A Ay (i RNTE—TH -+ -‘;)—‘R‘*—%— (Th—TY. (34)
- i‘\R

When gases are selective emitters, then the absorptivities of the medium are not equal to its emissiv~
ities, For gaseous carbon dioxide and water vapor, for example, the absorptivities referred to radiation
from black or gray walls have been determined in 2, 3]. For a unidirectional radiation we have

a(x) = (;,:Q)ns (x:;—; , Ts) : (39)

S
with n = 0.65 for carbon dioxide and n = 0.45 for water vapor. We will now rewrite expression (35) for each
ray between any surfaces Fj and Fy whatever. We then multiply it by coss;jcos $dF;dFy / Fiwxz and inte-
grate, obtaining on the left-hand side the absorptivity of the medium between the two surfaces times the
angular coefficient for radiation from surface i to surface k, and on the right-hand side the guantity (Tg
/Ts)ngoiks(STS /Tg, Tg), where S denotes the characteristic geometrical dimension of the radiation sys-

tem. Therefore,
AN
={ZVels=>,T. 1.
a(s) (T , T, s/

s

Formula (36) can be used for expressing x5 and X5 for the gas-filled space in terms of the following
egualities:

T \" T
.! k’ T ’ T y = ”“G‘) {'7 ky T ) s 3
r1ali o g7 (Ts, " \\l G rTG
T n T
. [T .
Xoa (i & T, Ty r)= (i‘:) Y (l, k, T, rT—S) ,
G
P _ (Tg\» A T
X33(17 2 TS’ TG‘ f)—— (}:) X3 (l’ L, 723, r i::;) B

With the aid of these solutions, one can then determine the radiative heat transfer within a spherical
layer of a gray medium with isotropic reflection from the boundary surfaces (formulas 6 and 7), a gray
medium with mirror reflection at the boundary surfaces (formulas 33 and 34), or a selective medium with



mirror reflection at the boundary surfaces (formulas 31, 32, and 37). These formulas are entirely cor-
rect. For a gray medium they can be used with any degree of accuracy; for a selective medium the aceu-
racy of this solution is limited by our ighorance of the emissivities and the absorptivities of gases, The
radiative heat transfer in a selective medium with isotropic reflection at the boundary surfaces can be
estimated approximately from the amount of radiative heat transfer with mirror reflection, namely the
latter amount multiplied by the respective ratio of heat transfer with isotropic reflection to heat transfer
with mirror reflection for a gray medium.

The data on determining (i, k) and (i, i) as well as on their values can be found in {1, 4].

From these solutions for isotropic reflection and mirror reflection follow a few special cases; for
a sphere with ¢jx =0 and ¢jj = 1,0, for a stratum with ¢y =1, 0 and ¢j; = 0, and for radiative heat trans-
fer within a diathermal medium with g;. = aj; = (i, k) = (i, i) =0. The sequence of the heat transfer cal-
culations for radiation from a stratum has been shown in {1].

The formulas are valid also for radiative heat transfer within the space between two infinitely long
coaxial cylinders,

The material presented here is also applicable to the calculation of selective radiation in various
areas of heat engineering.

NOTATION

qb(i) is the gas radijation energy absorbed by surface i, referred to radiant fluxes between
surfaces i and k, per 1 m? of surface i area;

q}';(i) is the gas radiation energy absorbed by surface i, referred to radiant fluxes beyond
surface k, per 1 m? of surface i area;

qg (k) is the gas radiation energy absorbed by surface k, per 1 m? of surface k area;

qk(i) is the energy emitted by surface k and absorbed by surface i, per 1 m? of surface k
area;

qy (k) is the energy emitted by surface k and absorbed by surface k, per 1 m? of surface k
area;

q;(k) is the energy emitted by surface i and absorbed by surface k per 1 m? of surface i
area;

q'i(i) is the energy emitted by surface i and absorbed by surface i, referred to radiant
fluxes between surfaces k and i, per 1 m? of surface i area;

q'i'(i) is the energy emitted by surface i and absorbed by surface i, referred to radiant
fluxes beyond surface k, per 1 m? of surface i area;

g (i) is the intrinsic radiation of surface i per 1 m? area;

q.(k) is the intrinsic radiation of surface k per 1 m? area;

Qine is the incident radiant flux;

Qeff is the effective radiant flux;

QR is the resuitant radiant flux;

F is the surface area;

r is the radius;

dw is the differential of solid angle;

wy is the solid angle subtending surface k as viewed from elements of surface i;

n is the angle between normal to surface k and the straight line joining two surface ele-
ments dF; and dFy;

# is the angle between normal to surface i and the straight line joining two surface
elements dFj and dFy;

@ik is the angular coefficient from surface i to surface k;

45 is the angular coefficient from surface i to itself;

is the absorptivity of the surfaces;

R is the reflectivity of the surfaces;

a(x) is the absorptivity of the medium along path x;

£y E(X) is the emissivity of the medium along path x;

ajk is the absorptivity of the medium between surfaces i and k;

is the absorptivity of the medium between surface i and surface i;
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g(i, k)
g(i, i)
di> DX
Ty
T

is the emissivity of the medium between surfaces i and k;

is the emissivity of the medium between surface i and surface i;
are the respective transmittivities of the medium;

is the black-radiation constant;

is the absolute temperature.

Subscripts

i refers to surface i;

k  refers to surface k;

G refers to gaseous medium;
R refers to resultant flux;
eff refers to effective flux;
inc refers to incident flux.
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